Publications

Published articles in peer-reviewed journals:

2024

Yang D, et al. (2024) Temporal change in minimum mortality temperature under changing climate. Environmental Epidemiology 8: e334, doi: 10.1097/EE9.0000000000000334

He C, Breitner-Busch S, Huber V, et al. (2024) Rainfall events and daily mortality across 645 global locations: two stage time series analysis. BMJ 387: e080944, doi: 10.1136/bmj-2024-080944

Wen B, et al. (2024) Comparison for the effects of different components of temperature variability on mortality: A multi-country time-series study. Env Int 187: 108712, https://doi.org/10.1016/j.envint.2024.108712

Guo Q, et al. (2024) Regional Variation in the Role of Humidity on City-level Heat-Related Mortality. PNAS Nexus 3 (8), 290, https://doi.org/10.1093/pnasnexus/pgae290

He C, et al. (2024) Nocturnal heat exposure and stroke risk. European Heart Journal 45(24): 2158–2166, https://doi.org/10.1093/eurheartj/ehae277

Chen K, et al. (2024) Impact of population aging on future temperature-related mortality at different global warming levels. Nature Communications 15: 1796, https://doi.org/10.1038/s41467-024-45901-z

Huber V, Breitner-Busch S, He C, Matthies-Wiesler F, Peters A, Schneider A (2024) Heat-related mortality in the extreme summer of 2022—an analysis based on daily data. Dtsch Arztebl Int 121: , DOI: 10.3238/arztebl.m2023.0254

Madayinazi L, et al. (2024) Seasonality of mortality under climate change: a multicountry projection study. The Lancet Planetary Health 8(2): e86-e94, https://doi.org/10.1016/S2542-5196(23)00269-3

Gao Y, et al. (2024) Global, regional, and national burden of mortality associated with cold spells during 2000–19: a three-stage modelling study. The Lancet Planetary Health 8(2): e108-e116, https://doi.org/10.1016/S2542-5196(23)00277-2

2023

Nidens N, Huber, V, Matthies-Wiesler F, Schneider A (2023) Klimawandel ganz nah: Hitzewellen – Auswirkungen und Vorbeugung. Nephrologie 2023 · 18:203–212 https://doi.org/10.1007/s11560-023-00659-1

Lüthi S, Fairless C, Fischer E, et al. (2023) Rapid increase in the risk of heat-related mortality. Nature Communications, https://doi.org/10.1038/s41467-023-40599-x

Rai M, Breitner-Busch S, Huber V, et al. (2023) Temporal Variation in the Association between Temperature and Cause-Specific Mortality in 15 German cities. Environmental Research, 115668, https://doi.org/10.1016/j.envres.2023.115668

Masselot P, et al. (2023) Excess mortality attributed to heat and cold: a health impact assessment study in 854 cities in Europe. The Lancet Planetary Health, https://doi.org/10.1016/S2542-5196(23)00023-2

2022

Wu Y, et al. (2022) Fluctuating temperature modifies heat-mortality association around the globe. Innovation 3 (2), 100225, https://doi.org/10.1016/j.xinn.2022.100225

Wu Y, et al. (2022) Global, regional, and national burden of mortality associated with short-term temperature variability from 2000-19: a three-stage modelling study. Lancet Planetary Health 6(5):e410-e421. DOI: 10.1016/S2542-5196(22)00073-0. PMID: 35550080.

Huber V, Peña Ortiz C, Gallego Puyol D, Lange S, Sera F (2022) Evidence of rapid adaptation integrated into projections of temperature-related excess mortality. Environ. Res. Lett. 17 044075 https://iopscience.iop.org/article/10.1088/1748-9326/ac5dee

Mistry MN, et al. (2022) Comparison of weather station and climate reanalysis data for modelling temperature-related mortality. Scientific Reports 12, https://doi.org/10.1038/s41598-022-09049-4

Chua PLC, Ng CFS, Madaniyazi L, Seposo X, Rivera A, Salazar MA, Huber V, Hashizume M (2022) Projecting temperature-attributable mortality and hospital admissions due to enteric infections in the Philippines. Environmental Health Perspectives, https://doi.org/10.1289/EHP9324

2021

Thiery W, et al. (2021), Intergenerational inequities in exposure to climate extremes, Science, doi: 10.1126/science.abi7339

Tobias A, et al. (2021) Geographical Variations of the Minimum Mortality Temperature at a Global Scale. Environmental Epidemiology 5:e169. doi: 10.1097/EE9.0000000000000169

Chen G, et al. (2021) Mortality risk attributable to wildfire-related PM2·5 pollution: a global time series study in 749 locations. The Lancet Planetary Health. https://doi.org/10.1016/S2542-5196(21)00200-X

Chua PLC, Ng CFS, Rivera A, Salva E, Salazar MA, Huber V, Hashizume M (2021) Association between Ambient Temperature and Severe Diarrhoea in the National Capital Region, Philippines. Int. J. Environ. Res. Public Health, 18(15), 8191; https://doi.org/10.3390/ijerph18158191

Rocklöv, J., Huber, V., Bowen, K., Paul, R. (2021) Taking globally consistent health impact projections to the next level. The Lancet Planetary Health. https://doi.org/10.1016/S2542-5196(21)00171-6

Chua, P.L.C., Huber, V., […], Hashizume, M. (2021) Global projections of temperature-attributable mortality due to enteric infections: a modelling study. The Lancet Planetary Health. https://doi.org/10.1016/S2542-5196(21)00152-2

Zhao, Q., et al. (2021) Global, regional, and national burden of mortality associated with non-optimal ambient temperatures from 2000 to 2019: a three-stage modelling study. The Lancet Planetary Health. https://doi.org/10.1016/S2542-5196(21)00081-4

Vicedo-Cabrera, A.M., et al. (2021) The burden of heat-related mortality attributable to recent human-induced climate change. Nature Climate Change, 11, p. 492–500.

Urban, A., et al. (2021) Evaluation of the ERA5 reanalysis-based Universal Thermal Climate Index on mortality data in Europe. Environmental Research, https://doi.org/10.1016/j.envres.2021.111227

Chen, K., et al. (2021) Ambient Carbon Monoxide and Daily Mortality: A Global Time-Series Study in 337 cities. Lancet Planetary Health. https://doi.org/10.1016/S2542-5196(21)00026-7

Meng, X., et al. (2021) Short term associations of ambient nitrogen dioxide with daily total, cardiovascular, and respiratory mortality: multilocation analysis in 398 cities. BMJ, 372 doi: https://doi.org/10.1136/bmj.n534

2020

Lange, S., et al. (2020) Projecting Exposure to Extreme Climate Impact Events Across Six Event Categories and Three Spatial Scales. Earth’s Future. https://doi.org/10.1029/2020EF001616

Huber, V., Krummenauer, L, Peña-Ortiz, C., Lange, S., Gasparrini, A., Vicedo-Cabrera, A.M., Garcia-Herrera, R., Frieler, K. (2020) Temperature-related excess mortality in German cities at 2°C and higher degrees of global warming. Environmental Research. doi.org/10.1016/j.envres.2020.109447

Vicedo-Cabrera, A.M., et al. (2020) Short term association between ozone and mortality: global two stage time series study in 406 locations in 20 countries. BMJ 2020;368:m10, doi: 10.1136/bmj.m108

2019 and earlier

Schewe, J., et al. (2019) State-of-the-art global models underestimate impacts from climate extremes. Nature Communications, 10:1005, doi: 10.1038/s41467-019-08745-6

Vicedo-Cabrera, A.M., et al. (2018) Temperature-related mortality impacts under and beyond Paris Agreement climate change scenarios. Climatic Change: https://doi.org/10.1007/s10584-018-2274-3

Tittensor, D.P., et al. (2018) A protocol for the intercomparison of marine fishery and ecosystem models: Fish-MIP v1.0. Geoscientific Model Development, 11, 1421-1442, https://doi.org/10.5194/gmd-11-1421-2018

Frieler, K., et al. (2017) Assessing the impacts of 1.5°C global warming – simulation protocol of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP2b). Geoscientific Model Development, 10, 4321–4345

Gasparrini, A., et al. (2017) Projections of temperature-related excess mortality under climate change scenarios. Lancet Planetary Health: DOI: http://dx.doi.org/10.1016/S2542-5196(17)30156-0

Huber, V., Ibarreta, D., Frieler K. (2017) Cold and heat related mortality: a cautionary note on current damage functions with net benefits from climate change. Climatic Change: DOI 10.1007/s10584-017-1956-6. Download Python code and data

Frieler, K., […], Huber, V., Piontek, F., Warszawski, L., Schewe, J., Lotze-Campen, H., Schellnhuber, H.J. (2015) A framework for the cross-sectoral integration of multi-model impact projections: Land use decisions under climate impacts uncertainties. Earth System Dynamics, 6, 447-460

Huber, V., H. J. Schellnhuber, N. W. Arnell, K. Frieler, A. D. Friend, D. Gerten, I. Haddeland, P. Kabat, H. Lotze-Campen, W. Lucht, M. Parry, F. Piontek, C. Rosenzweig, J. Schewe, and L. Warszawski (2014) Climate impact research: beyond patchwork. Earth System Dynamics, 5, 399-408.

Sakschewski, B., von Bloh, W., Huber, V., Müller, C., Bondeau, A. (2014) Feeding 10 billion people under climate change: How large is the production gap of current agricultural systems? Ecological Modelling 288: 103-111.

Huber, V., Neher, I., Höfner, K., Bodirsky, B., Schellnhuber, H.J. (2014) Will the world run out of land? A Kaya-like decomposition to study past trends of cropland expansion. Environ. Res. Lett. 9: 024011

Warszawski, L., Frieler, K., Huber, V., Piontek, F., Serdeczny, O., Schewe, J. (2014) The Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP): Project framework. Proceedings of the National Academy of Sciences 111: 3228–3232.

Adrian, R., Gerten, D., Huber, V., Wagner, C., Schmidt, S.R. (2012). Windows of change: temporal scale of analysis is decisive to detect ecosystem responses to climate change. Marine Biology 159: 2533-2542.

Schneider von Deimling, T., M. Meinshausen, A. Levermann, V. Huber, K. Frieler, D. M. Lawrence and V. Brovkin (2012). Estimating the permafrost-carbon feedback on global warming. Biogeosciences 9: 649-665

Huber, V., D. Gerten and R. Adrian (2012). To bloom or not to bloom: Contrasting responses of cyanobacteria to recent heat waves explained by critical thresholds of abiotic drivers. Oecologia 169(1): 245-256, (doi) 10.1007/s00442-011-2186-7

Huber, V., D. Gerten and R. Adrian (2010) A matter of timing: heat wave impact on crustacean zooplankton. Freshwater Biology 55(8):1769–1779

Steiner, C.F., A.S. Schwaderer, V. Huber, C.A. Klausmeier and E. Litchman (2009) Periodically forced food chain dynamics: model predictions and experimental validation. Ecology 90(11): 3099-3107

Huber, V., R. Adrian and D. Gerten (2008) Phytoplankton response to global warming modified by trophic state. Limnol. Oceanogr. 53(1): 1-13, https://doi.org/10.4319/lo.2008.53.1.0001

Thebault, E., V. Huber and M. Loreau (2007) Cascading extinctions and ecosystem functioning: constrasting effects of diversity depending on food web structure. Oikos 116(1): 163-173.

Huber, V. and U. Gaedke (2006) The role of predation for seasonal variability patterns among phytoplankton and ciliates. Oikos 114(2): 265-276.

IPCC assessment report:

Contributing Author to: O’Neill, B., M. van Aalst, Z. Zaiton Ibrahim, L. Berrang Ford, S. Bhadwal, H. Buhaug, D. Diaz, K. Frieler, M. Garschagen, A. Magnan, G. Midgley, A. Mirzabaev, A. Thomas, and R. Warren, 2022: Key Risks Across Sectors and Regions. In: Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [H.-O. Pörtner, D.C. Roberts, M. Tignor, E.S. Poloczanska, K. Mintenbeck, A. Alegría, M. Craig, S. Langsdorf, S. Löschke, V. Möller, A. Okem, B. Rama (eds.)]. Cambridge University Press, Cambridge, UK and New York, NY, USA, pp. 2411–2538, doi:10.1017/9781009325844.025.

Published articles in non-peer-reviewed journals:

Habermann-Horstmeier, L., and Huber, V. (2023) Anpassung der städtischen ­Infrastruktur an den Klimawandel. ASU Zeitschrift für medizinischen Prävention 8: doi: 10.17147/asu-1-295567

Huber, V. and A. Peters (2022) Klimaschutz ist Gesundheitsschutz. Bayrisches Ärzteblatt, 4, 164-165

Schellnhuber H.J. and V. Huber (2013) Melting and Mystification – A Comparative Analysis of Mitigation and Adaptation Strategies. In: P.J. Crutzen, L. Bengtsson and V. Ramanathan (eds) Proceedings of the Working Group 2-4 April 2011. Scripta Varia 118, Vatican City, 2013

Huber, V. and H.J. Schellnhuber (2010) Keynote: A Tipping-Elements Expedition in the Footsteps of Alexander von Humboldt. In Endlicher, W. and Gerstengarbe, F.-W. (eds) Continents under Climate Change. Nova Acta LeopoldinaN.F.; 112, 384, Wissenschaftliche Verlagsgesellschaft, Stuttgart.

Books and book chapters:

Lüthi, S., Matthies-Wiesler, F. and V. Huber (2024) Gesundheitsrisiken durch Hitzewellen. In: Lozán J. L., H. Graßl, D. Kasang, M. Quante & J. Sillmann (Hrsg.) Warnsignal Klima: Herausforderung Wetterextreme – Ursachen, Auswirkungen, Handlungsoptionen. Wissenschaftliche Auswertungen – in Kooperation mit GEO. 384 S. ISBN 978 3982 006772

Huber, V. (2021) Der anthropogene Klimawandel und seine Folgen: Wie sich Umwelt- und Lebensbedingungen in Deutschland verändern. In: C. Günster, J. Klauber, B.-P. Robra, C. Schmuker, A. Schneider (Hrsg.) Versorgungs-Report Klima und Gesundheit. Medizinisch Wissenschaftliche Verlagsgesellschaft (Berlin). 283 Seiten; ISBN 978-3-95466-626-3

Müller, C., H. Lotze-Campen, V. Huber, A. Popp, A. Svirejeva-Hopkins, M. Krause and H.J. Schellnhuber (2011) Towards a Great Land-Use Transformation? In: Brauch, H.G., U. Oswald Spring, C. Mesjasz, et al. (eds.) Coping with Global Environmental Change, Disasters and Security Threats, Challenges, Vulnerabilities and Risks. Springer, Heidelberg.

Schellnhuber, H.J, M. Molina, N. Stern, V. Huber and S. Kadner (eds.) (2010) Global Sustainability – A Nobel Cause. Cambridge University Press, Cambridge.

Huber, V. and H.J. Schellnhuber (2010) Der Klimawandel. In Henckel, D., von Kuczkowski, K., Lau, P., Pahl-Weber, E., Stellmacher, F. (eds.) Planen Bauen Umwelt – Ein Handbuch. VS Verlag, Wiesbaden.

Huber, V. und C. Breyer (2008) Ursachen und Folgen des Klimawandels. In: Creutzig, F. und J.C. Goldschmidt (eds.), Energie, Macht, Vernunft – Der umfassende Blick auf die Energiewende. Shaker Media, Aachen.

Others:

Huber, V. (2010) Climate impact on phytoplankton blooms in shallow lakes. Model-based data analyses a data-guided model approaches. PhD Thesis, University of Potsdam.